Power Generation Efficiency Characteristics Evaluation System PEM-2

Applying a 500°C maximum temperature difference across a thermoelectric module under test, the PEM-2 finds the thermoelectric conversion rate h by finding the generated power P when a one-dimensional heat flow Q passes through the module. A single run generates a complete set of data characterizing module performance over a wide range of temperatures, and shows the results automatically in a set of elegant graphical displays.

Applications

- Generation efficiency measurements of thermoelectric generator modules
- Lifespan testing of modules by thermal cycle testing

Features

- Uses an Infrared Gold Image Furnace with excellent temperature controllability to allow rapid module performance evaluations and endurance testing.
- Capable of applying a maximum 500°C temperature difference across the top and bottom surface of the module.
- Capable of measuring the amount of heat passed through the module.
- Stably maintains the thermal resistance of the contact surface during heating with the air cylinder mechanism.
- Measurement behavior can be configured with only software settings by temperature stability judgments, automatic variation of the load on the thermoelectric generator module, and automatic control of the measurement temperature.

Specifications

Power Generation Efficiency Characteristics Evaluation System	
Type	PEM-2
Measurement	Conversion efficiency, Power genereton amount, Penetration
Properties	heat amount
Measurement Method	One-dimensional heat flow input method
Temperature Range	Max. 800°C
Sample Size	30 mm square x 5 to 30 mm thickness (negotiable)
Measurement	Inert gas
Atomosphere	