Designed by $ZIV \in LAB$

Multichannel Electrochemical Workstation ZIVE MP2C

For Multi-Working Electrode Application Including Internal FRA/ZRA 10Volts/2Amp

For BioElectrochemistry FET Sensor Corrosion/Material Testing Battery/Fuel Cell Super Capacitor/Solar Cell

The ZIVE MP2C, the outstanding multichannel Potentiostate/ Galvanostat/FRA, is developed for special applications in which more than one working electrode is used in a single electrochemical cell. The multiple working electrodes share counter electrode and the reference electrode. And the ZIVE MP2C can be also used for separated multiple cells with a working, reference and counter electrode. The system is the best choice for the complete DC and impedance characterization of corrosion, coating, sensor and other fundamental electrochemical analysis. And also, its versatile functions make it suitabe to other application including various energy sources and storage such as fuel cells, batteries, solar cells, and super capacitors.

Each channel is designed under FPGA and DSP control with high speed capability.

DAC Control

: Two sets of high speed 16bit DAC(50MHz) for offset & scanning & one set of 16bit DAC(1MHz) for auxiliary analog output control.

ADC Reading

: Two sets of 16 bit 500kHz ADC for reading voltage/current and 4 channel 16bit 250kHz ADCs for auxiliary data input such as temperature, auxiliary voltage etc. It provides high frequency EIS, fast pulse techniques and high speed sampling time.

Each channel of ZIVE MP2C is equipped with a Frequency Response Analyzer(FRA) as standard and it provides high performance impedance measurements over the frequency range 10uHz to 1MHz. The ZRA(zero resistance ammeter) function can measure max. 2Amp in galvanic corrosion technique. The system is supplied with four(4) advanced software packages, which are catagorized by application fields. With this advanced software packages, user can widen ZIVE MP2C's flexibility.

System Features

- Versatile high quality multichannel potentiostat/galvanostat/impedance analyzer
- 8 fully independent channels with 14 EIS techniques capability including multisine
- Bi-potentiostat/multi working electrode cell sharing one reference and one counter electrode configuration available
- Multichannel FRA function to control an external electronic load or 3rd party potentiostat/galvanostat is available as standard
- Current interrupt IR measurement IR compensation(dynamic, positive feedback)
- Bipolar pulse capability
- Voltage pulse or current pulse charge/discharge test(GSM,CDMA etc.), sine wave function for ripple simulation in battery test package and pulse plating available
- High speed data sampling time
 - 50usec/sample in burst mode
- 1msec/sample in normal mode
- 2usec/sample in fast sweep mode
- Fast sweep mode(5000V/sec with 10mV data sampling)
- 3 measurement/control voltage ranges & 12 measurement/control current ranges
- Internal 295,000 data point storage and continuing experiment regardless of PC failure
- Full software packages are included as standard
- Electrochemical analysis software package(EAS)
- Corrosion test software package(COR)
- EIS test software package(EIS)
- Energy software package(BAT)
- Channel expandable up to 32 channels
- Free software upgrade

Hardware Features

- ±10V@2Amp control range per channel
- Wide current ranges(2A to 20pA) for various applications (200pA and 20pA ranges are with gain)
- High speed potentiostat circuit
- Min. number of channels : 2 channels
- Independent operation by FPGA with DSP
- Built-in FRA per channel for impedance measurement
- Temperature measurement as standard
- Simultaneous 3 auxiliary voltage measurements
- 1 auxiliary analog output
- 3 digital outputs & 2 digital inputs
- External booster(ZB series) interface
- External multiplexer(MUX series) interface for a sequential measurements on multiple electrochemical cells

• Front View

• Channel View

Built-in FRA FPGA/DSP control Plug-in type

Aux port:

3 analog inputs

1 analog output

2 digital input

3 digital output

(auxiliary voltage measurement)

Cell port: working, reference, counter, working sense Misc port: I2C com port for external device control FRA port 1 sig generator output 1 voltage input 1 current input

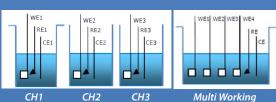
Versatility

The ZIVE MP2C's system comes with additional three analog inputs (auxiliary voltage input) and 1 analog output along with 3 digital outputs and 2 digital inputs, and one temperature input for K type thermocouple. It will help users expand the usage of the instrument.

For example,

- 1. User can measure the voltage between working and reference electrode and, by using 2 additional analog inputs(auxiliary voltage input), user can also measure the voltage between reference and counter electrode and working and counter electrode as well.
- 2. With analog output, the system can control rotating speed of the rotator, MFC flow rate etc. by $\pm 10V$ full scale.
- 3. User can control on/off of max. 3 devices by DO etc.

Safety and Maintenance


- Even though the communication failure occurs between PC and ZIVE MP2C, the system continues its experiment on channel and saves the data into ZIVE memory up to 295,000 data point set. After the communication is restored, ZIVE will transfer saved data to PC automatically or user can transfer data when he/she wants. This function will be highly efficient for long time experiment.
- User can define a safety condition setting by inputting his/her own safety levels for voltage, current, temperature etc. If the measurement value exceeds this setting value, the system will automatically stop to protect the system and cell.
- 3. If the control value of voltage or current is different from measured value, the experiment will stop automatically to protect the cell.
- 4. Automatic calibration function is available for user calibration.
- 5. The system has its own hardware parameters and calibration data.
- 6. The channels feature plug-n-play setup for easy instrallation and removal.
- 7. The system is controlled from a PC via USB.
- 8. An 8 channel system can be expanded to a 16ch-, a 24ch-system etc. by using an USB hub.

Application

The MP2C multichannel electrochemical workstation is ideal for bi-potentiostat application or multi working electrode application. And it can be also used for fundamental research in electrochemistry, development and quality assurance of new sensors, corrosion/ coatings, electrode material, membrane, conducting polymer, evaluation power device research such as battery materials, fuel cells, super capacitors and solar cells.

FET Sensor

Electrode System

Sensors

The ZIVE MP2C can be used for sensor research using with DNA chips or screen printed electrodes. System's minimum current range is 20pA(with gain). Cyclic voltammetry, Chronoamperometry and EIS measurement can be used for this application.

Corrosion

The system is suitable for measuring low corrosion rates and EIS test to evaluate corrosion. The ZRA function is supplied for galvanic corrosion measurement.

General Electrochemistry

The ZIVE MP2C is also suitable for the development of bio-research, electron transfer kinetic studies and electrochemical analysis of compounds at low trace levels, where multichannel DC and impedance analysis is beneficial in providing high throughput of results.

Batteries

The system is very well adapted for researches on the cycling behavior of battery. It provides various control modes for battery cycling. It can support EVS (electrochemical voltage spectroscopy)/GITT/PITT test. Fast pulse capability for GSM, CDMA test is included in battery test software package. Pulse profile measurement function to check pulse shape is available. For ripple simulation test, sine wave charging/discharging is available.

Fuel Cells

The **ZIVE MP2C** is ideal for characterizing the fuel cells and anodic/cathodic process mechanism at development and research grade. This system can be directly used for PEMFC, DMFC, and DEFC etc. The FRA can control an external electronic load for EIS measurement of fuel cell. I-V curve measurements in a full range of available current(autorange option is active during the I-V scan in order to ensure measurement with continuously high resolution).

Super Capacitors

The ZIVE MP2C has fast potentiostat circuit with high speed data acquisition(50usec/point, burst mode). This function is well applicable to super capacitor testing. Charging/discharging capability is used for this application.

Solar Cells

Solar cell development and production requires extensive material and device testing to improve efficiency and match individual cells for panel construction. The ZIVE MP2C is the best solution for photovoltaic cell characterization. With system's AI, AO, DI, and DO, the system can monitor other device's signal and also control them.

SM Main Software

The Smart Manager (SM) is to control ZIVE MP2A model and it provides user defined sequential test by using sequence file, technique menu and batch file. The batch file allows the users to do a serial test by combining sequence files and/or technique files.

The SM software is easy to use and supports various electrochemical experiments including functions of system control, schedule file editor, real time graph, analysis graph, user calibration, and data file treatment etc.

tee, IF EE, IF Errege IF Consen IF Ed Internation These techniques		Factorization (1977) 10 Reconstruct (1978)					0	0241
A 1044		120	14.8		- Californi			344
Patentiabez		Settal Adapt	12 Cutto					lare as
Colorestate Deuble stat petermeters		(As mariti	10	_				
Couldre start universatiatie		memory	L300+7					
00 Massurament	11	Intel providelini	0.000m+0	34		+		Apple to DA
Printer anno		Mode pole-tail(1)	4.200e+i	104		-		
Current manage		Prod porterinal??	1.700m el	104				Chie
Colk withrowity		Inter-selected(1)	41.55m-1					
That potentia moves		(deres)	10.0					
A hity Human arment		And instrume	Seattle .					
/ 6-Ra Massarantert		-0466	10.0					
(III anthope(EII))		· Tariph (with [2]						
Provinces III		lagrand		1				
A Galvariestotic ETR		20. Personal of	C 94					
007 ES		164900	1.0		800			
Prevent Instances asserts Prevent Instances ISS Committee Instances ISS Preventions and instance ISS Preventions and instance ISB Preventions and instance ISB Preventions and instance ISB Preventions and instance ISB Preventions and IsB Preventions and IsB Preventions and IsB Preventions and IsB Preventions							•	

Technique list (some techniques require a license to use)

Potentiostatic
 Galvanostatic
 Double step potentiostatic
 Double step galvanostatic
 OCP Measurement

Dynamic
 Potential sweep
 Cyclic voltammetry
 Cyclic voltammetry

Fast potential sweep

P-Ru Measurement 🖉 G-Ru Measurement

Techniques

Basic techniques

Static

Basic Techniques

- Basic techniques with standard functions
- 1) Potentiostatic
- 2) Galvanostatic
- 3) Double step potentiostatic
- 4) Double step galvanostatic
- 6) Potential sweep
- 7) Current sweep
- 8) Cyclic voltammetry
- 9) Fast potential sweep
- 10) Potentiostatic Ru measurement
- 11) Galvanostatic Ru measurement

The above functions can be used sequentially by step control function.

Sequence editor

User can design his/her experiment procedure by using TASK sequential routine editor.

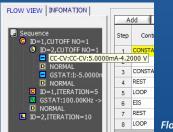
Sequence editor

• Control	Task Parameters
-----------	-----------------

GSTAT nstant current contr Crate constant Crate control constant voltage control POWER constant power control LOAD stant load contro Crate-CV Crate constant voltage control constant power constant voltage control constant load constant voltage control Id Is OCP OCP control Step current step control PSTAT potential step contro GSTAT current sweep control fast current sweep cont PSTAT potential sweep control FAST-I fast potential sweep cont GSTAT galvanostatic EIS PSTAT potentiostatic EIS OCP OCP EIS PSUEDC pseudo galvanostatic EIS HFR G galvanostatic HFR potentiostatic HFR Msine galvanostatic multisine EIS Msine potentiostatic multisine EIS Rest rest control loop control Pulse Vpulse voltage pulse control Ipulse current pulse control GSINE current sine wave control potential sine wave control

- · Constant potential, current, C-rate, power, load, OCP
- Sweep potential, current
- Fast sweep potential, current
- Staircase potential, current
- CC-CV, CP-CV, CL-CV, Crate-CV control
- Id, Is control
- EIS control
- Pulse or sinewave control
- Rest(voltage monitoring only)
- Loop(cycle) control

Cut-off(Vertex) Condition


- Time(step, test, loop, cycle)
- Current, current density
- Voltage
- Capacity
- C-rate
- -dV
- dV/dt
- dl/dt
- Aux1
- Eoc

• Sampling Condition

• time, |dl/dt|, |dV/dt|, |dT/dt|, |dA1/dt|, burst time

• Flow View

• This displays sequence flow at a glance.

		C	ondi	tion-1
Item		OF	>	DeltaValue
Step Time	-	>=	-	30
None Step End Step Time				
Job Hill Current I Density Voltage [Capacity] dV [Idi/dt] Idi/dt] Idi/dt] Temp.(C) AUX1 AUX2 AUX2 AUX3 Test Time Loco Time Cyde Time Eoc ILCC(%) LCC(%) SumQ(AHr) SumQ(Arr) Loo P Kext D Fon.				

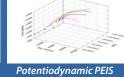
Batch function

User can design batch file including multiple technique files and/or techniques/sequence in series automatically.

§								Batch schedule - Untitled.zbt •
Open	Batch Fé	e San	e I	iave		Ap	ply t	o Channel Add Insert[Dn] Insert[Up] Delete Oose
Index		5	etting Loop					Schedule File(s)
procx.	Enable	Count	next		Loop End		Chg	File Name
1	1	1	Next	+	Next	•		C:/Zive Data/sm/schedule/evs1.EVS
2	E	1	Next	٠	Next	٠		C:/Zive Data/sm/schedule/sccv.CCV
3	E	1	Next	•	Next	•		Ct/Zive Data/sm/schedule/b1.CCV
4		1	Next	*	Next	٠		C:/Zve Data/en/kchedule/2.7v.IPI
5		1	Next	-	Next	•		C:/Zive Data/sm/schedule/dd.IPE
6	E	1	Next	-	Next			Ct/Zive Data/em/schedule/4.2/.IPE
7		5	Index-1	-	Next	*	444	Ci/Zive Data/sm/schedule/cccv L/CCV
.8	E	1	Next	-	Next			C:/Zive Data/sn/schedule/coin.CCV

Smart Manager Advanced Software Package

For a wide range of application, advanced software packages for specific experimental techniques are available as standard.

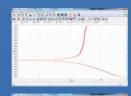

EIS Software Package(EIS)

- 1. Potentiostatic EIS
- 2. Galvanostatic EIS
- 3. Pseudo galvanostatic EIS
- 5. Potentiodynamic PEIS
- 6. Galvanodynamic GEIS
- 7. Potentiodynamic HFR
- 8. Galvanodynamic HFR
- 9. Potentiostatic HFR monitor
- 10. Galvanostatic HFR monitor
- 11. Multisine potentiostatic EIS
- 12. Multisine galvanostatic EIS
- 13. Intermittent potentiostatic EIS
- 14. Intermittent galvanostatic EIS

Coin cell Intermittent PEIS 3D Nyquist plot by ZMAN

(*1) The system measures open circuit potential before each frequency change and applies AC sine wave on this potential.

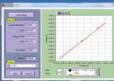
Electrochemical Analysis Software Package(EAS)


- 1. Step techniques
- CA(Chronoamperometry)
- CC(Chronocoulometry)
- CP(Chronopotentiometry)
- 2. Sweep techniques
- LSV(Linear sweep voltammetry)
- SDV(Sampled DC voltammetry)
- Fast CV
- Fast LSV
- 3. Pulsed techniques
- DPV(Differential pulse voltammetry)
- SWV(Square wave voltammetry)
- DPA(Diff. pulse amperometry)
- NPV(Normal pulsed voltammetry)
- RNPV(Reverse normal pulse voltammetry)
- DNPV(Differential normal pulse voltammetry)



Corrosion Software Package(COR)


Corrosion technique supports IR compensation.


- 1. Tafel(Tafel experiment)
- 2. Rp(Polarization resistance)
- 3. RpEc trend
- 4. PDYN(Potentiodynamic)
- 5. CYPOL(Cyclic polarization resistance)
- 6. GDYN(Galvanodynamic)
- 7. Reactivation
- 8. Galvanic corrosion
- 9. Potentiostatic ECN
- 10. Galvanostatic ECN
- 11. ZRA mode ECN



CYPOL(Cyclic polarization resistance)

Battery Software Package(BAT)

BAT software supports IR measurement.

- 1. Battery test techniques
- CC/CV test for cycle life test of lithium battery
- CC/CC test for cycle life test of NiCd or NiMH battery
- Discharging test
- EVS(Electrochemical voltage spectroscopy)
- Variable scan rate CV
- Potentiostatic IV curve
- Galvanostatic IV curve
- Steadystate CV
- PITT(Potentiostatic intermittent titration technique) test
- GITT(Galvanostatic intermittent titration technique) test
- Pulse mode is available for GSM & CDMA profile. Pulse shape profile can be measured by user's demand.

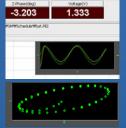
Each software package's upgrade will be provided at free of charge.

Control & Real Time Graph

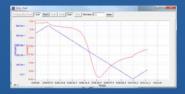
Smart Manager provides 2 kinds of control & data acquisition with real time graph.

(EIS data/DC data selectable)

Multichannel Control Panel


Multichannel Real Time Graph

User can control and monitor for specific channel in details and he/she can monitor data in VOI(value of interest) window and channel status in one window. Real time graph's X, Y axis format will be changed per technique automatically. It can be defined by user's demand per technique.



For experiment using sequence file or batch file, user can designate X,Y parameter on three different real time graph. The real time graph's format can be also selected. The channel number which you control can be changed in this window. Even if you control the channel in this mode, you can also monitor and control the same channel in this control panel at same time.

The real time graph and VOI will be changed depending on DC test or impedance test automatically. The virtual control panel always displays the graph for recent test result. For impedance measurement, wave monitor will be displayed on real time graph to check wave's quality. This monitor can be switched to Lissajous(I vs. E) plot.

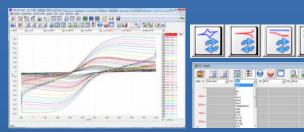
Strip Chart

Strip chart recorder function provides real graph function independently. You can monitor 2 Y axis data such as voltage, current, AuxV1,2,3, temperature, power, capacity etc. in real time and can select channel(s) which you want to monitor. You can also set max. data point for showing strip chart length.

Simple Monitor

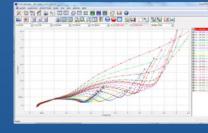
This display window is for monitor the major data values and channel status for multiple channel operation.

Smart Manager's graph function is to simplify the operation. There are 3 kinds of graph per each experiment. You can change X, Y1, Y2, Y3, Y4 axis parameter as you want. Each graph provides shortcut buttons. When you click these buttons, the format of the graph will be changed accordingly.



In DC and Cycle graph, whenever you click 🔒 or 🤹 , the parameters which are related to current such as current, capacity, energy, power, load, etc., are changed into calculated specific value or density value, respectively.

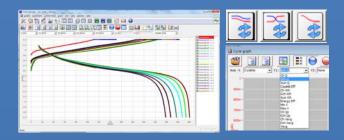
🗧 : value divided by active area

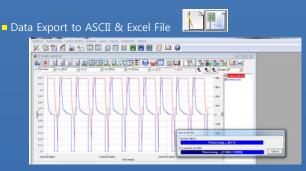

1) DC Graph

- For general data display
- 4 shortcut buttons: I vs. V, E vs. LogI, V, I vs. time, V vs. Q
- Graph parameters: time, Eref, I, Eoc, Id, Aux1, Aux2, Aux3, temp, LogI, Load, ChQ, DchQ, ChQs, DchQs, Ch P, Dch P, Ch-Wh, Dch-Wh, Sum Wh, Sum Q, Sum |Q|, |Q|, Rp, dQ/dV

2) EIS Graph

- For EIS data display
- 3 shortcut buttons: Nyquist plot , Bode plot, Cs vs. frequency
- Graph parameters: Frequency, Zre, -Zim, Zmag, Zph, Y', Yimg, Y, |Y|, Yph, LogZ, LogY, Rs(R-C), Cs(R-C), Rp(R|C), Cp(R|C), Rs(R-L), Ls(R-L), Q(R-L), time, Vdc, Idc, temp, Aux(1,2,3)





3D Bode plot by ZMAN Technique used: Potentiodynamic impedance measurement by using a corrosion cell

3) BAT Graph

- For battery cycle data display
- 3 shortcut buttons: cycle capacity, cycle average, Log(cycle No) vs. depth of discharge plot.
- Graph parameters: cycle number, Ch Q, Dch Q, Sum Q, Coulomb Eff, Ch-Wh, Dch-Wh, Sum Wh, Energy Eff, MinV, MaxV, ChQs, DchQ, ChVavg, DchVavg, Vavg

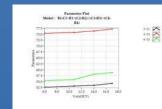
Selectable between 'Convert data on graph only' and 'Convert selected file(s)'

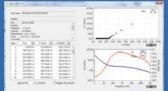
Data Analysis Software

ZIVE data file can be used for analysis by using external IVMAN™ software for DC analysis, IVMAN DA™ software for battery data analysis, IVMAN PA™ software for photo-voltaic cell data analysis and ZMAN[™] software for EIS data analysis without license.

ZMAN[™] EIS Data Analysis Software

- Model simulation and fitting
- 2D- and 3D-Bode- and Nyquist plots
- Automatic equivalent circuit model search function
- Project concept to handle multiple EIS data analysis
- Parameter plot from fitted elements value
- Compatible with data format from Zahner, Gamry, Ametek etc. (License code is needed.)
- Various weighting algorithm
- Model library and user model
- KK plot
- Batch fitting for project data
- Impedance parameter simulation
- Interpolate bad data
- Black-Nichols plot
- 3D graph setting option
- Improved model editor
- Application model library for automatic searching
- Parameter simulation of model
- Genetic algorithm option for initial guessing
- Automatic initial guessing
- Trace movie function on fitting


- Free for ZIVE's data format(*.seo, *.wis) analysis (No license code required.)
- Circle fitting
- Data editing available (insert, delete, edit)
- Add/subtract element parameters
- Add/subtract model parameters
- Impedance, Z in polar, admittance, Y in Polar, modulus, M in polar, dielectric constant, E in polar. data display
- Empty cell capacitance calculation
- Find file function
- Data replacement by formula function
- Cursor data display
- Model finding result automatic sorting by Chi square value

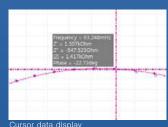

24 1

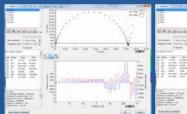
2.44

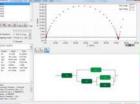
- R, C R, L R, Q preview & graphic
- ZHIT function
- Mott-Schottky analysis
- Donor density vs. Vfb graph
- C vs. voltage graph

11

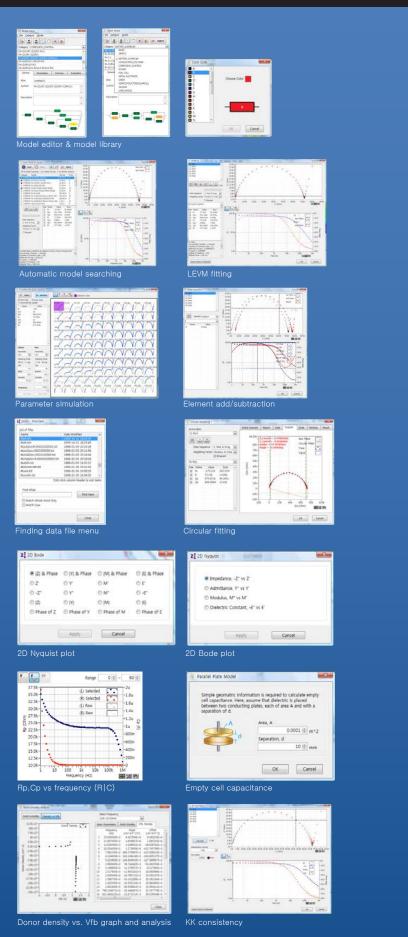
ncy (Hz) 3D Bode plot for series measurement

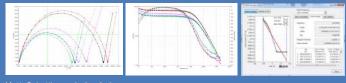

-18 14 19

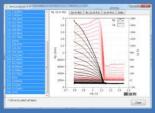

Importing 3rd parties ASCII data file


Project manager with data preview

Parameter plo



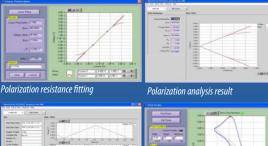


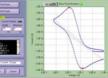


Data replacement by formula function

Fitting display

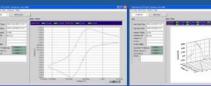
C/R-V grapl


IVMAN[™] DC Data Analysis Software



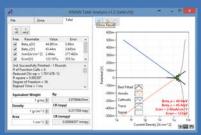
- IVMAN[™] software package consists of
- IVMAN software
- IVMAN utilities
- IVMAN main software
- IVMAN differential analysis software
- IVMAN photo voltaic cell analysis.
- IVMAN Tafel analysis
- IVMAN extractor
- IVMAN peak find module

™ IVMAN™ Main Software

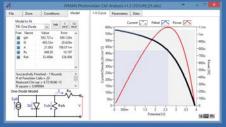

- Ideal for DC corrosion data analysis and electro-analytical data analysis
- Initial guessing function on Tafel analysis
- Polarization resistance fitting
- 3D graph
- Find peak function
- Interpolation, differentiation, integration etc.
- Reporting function

Time graph

Find peak menu

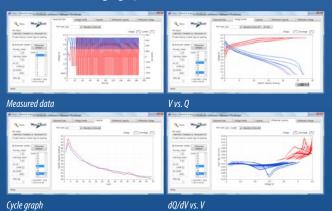

CV graph

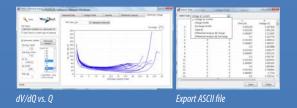
3D graph



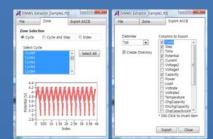
• Simple Tafel calculation

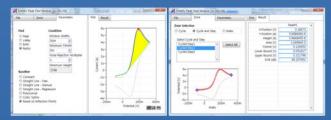
IVMAN™ Photovoltaic Cell Analysis




• Automatic analysis of parameters -open circuit voltage, open circuit current, max. power, efficiency photo induced current, diode quality factor, series resistance, etc.

IVMAN DA[™] Battery Test Data Analysis Software


- Battery test data analysis
- Electrochemical voltage spectroscopy (dQ/dV vs. V)
- Voltage vs. Capacity analysis (V vs. Q)
- Cycle graph (Q vs. cycle)
 Differential voltage graph(dV/dQ vs. Q)


IVMAN EX™ Extractor

- Extracting data by cycle number or step
- Exporting ASCII file

IVMAN PF[™] Peak Find Module

• Independent peak finding software

MCC with fuel cell hardware fixture

Specification

Main System	
PC communication	USB2.0 high speed
Line voltage	100~240VAC, 50/60Hz, 1Amp
Max. channel number	8 independent channels per unit
Max. output power	30Watt per channel
Max. channel	32 channels(4 units) expandable per PC
Size/weight	448.7x188.4x535.4mm(WxHxD) / 23.3kg(8ch)

System	
Cell cable	1 meter shielded type(standard)
	working, reference, counter,
	working sense
Control	DSP with FPGA
DAC	2x16bit DAC(50MHz) for bias & scan
	1X16bit DAC(1MHz) for analog output
Data acquisition	2x16bit ADCs(500kHz) for voltage, current
ADC	1x16bit ADCs(250kHz) for auxiliary voltage
	and temperature reading
Calibration	Automatic
Filter selection	4ea(5Hz, 1kHz, 500kHz, 5MHz)
Scan rate	0~200V/sec in common mode
	0~5000V/sec in fast mode
LED indicator	Busy, Run
Internal data memory	295,000 points

Power Amplifier(CE)			
Power	24Watt(12V@2A)		
Compliance voltage	±12V		
Max. current	±2A		
Control speed selection	8ea		
Bandwidth	2MHz		
Slew rate	10V/usec		

Potentiostat Mode (voltage control)			
Voltage control			
Control voltage range	±10V, ±1V, ±100mV		
Voltage resolution	16 bit per each range		
Voltage accuracy	±1mV ±0.05% of setting(gain x1)		
Max. scan range	±10V vs. ref. E		
Current measurement			
Current range	12 ranges(auto/manual setting)		
	2nA~2A		
	20pA & 200pA with gain		
Current resolution	16 bit		
	60uA, 6uA, 600nA, 60nA, 6nA, 600pA,		
	60pA, 6pA, 600fA, 60fA, 6fA, 0.6fA		
Current accuracy	±10pA ±0.1% f.s.(gain x1)>200nA		

Galvanostat Mode (current control)		
Current control		
Control current range	max. ±2A	
	± full scale depending on selected range	
Current resolution	16 bit	
	60uA, 6uA, 600nA, 60nA, 6nA, 600pA,	
	60pA, 6pA, 600fA, 60fA, 6fA, 0.6fA	
Current accuracy	±10pA ±0.1% f.s.(gain x1)>200nA	
Voltage measurement		
Voltage range	10V, 1V, 100mV	
Voltage resolution	16 bit	
	0.3mV, 30uV, 3uV	
Voltage accuracy	±1mV ±0.05% of reading(gain x1)	

Electrometer	
Max. input voltage	±10V
Input impedance	2x10 ¹³ Ω 4.5pF
Bandwidth	>22MHz
CMRR	>114dB

EIS(Internal FRA) for System

Frequency range	10uHz~1MHz
Frequency accuracy	<0.01%
Frequency resolution	5000/decade
Amplitude	0.1mV~5Vrms(Potentiostatic)
	0.1~70% f.s.(Galvanostatic)
Mode	Static EIS:
	Potentiostatic, Galvanostatic,
	Pseudogalvanostatic, OCP
	Dynamic EIS:
	Potentiodynamic, Galvanodynamic
	Fixed frequency impedance:
	Potentiostatic, Galvanostatic,
	Potentiodynamic, Galvanodynamic
	Multisine EIS:
	Potentiostatic, Galvanostatic
	Intermittent PEIS/GEIS

Interfaces for System

Auxiliary port	
Digital output	3(open collector)
Digital input	2(photo coupler)
Auxiliary voltage inputs	3 analog inputs: ±10V
	For measurement of WE vs. CE
	CE vs. RE or other signal
Analog output	1 analog output: ±10V
	For stirrer, MFC, RDE, etc.
Misc. port	
Sig generator output	1 analog output for FRA output or
	waveform generation output
Peripheral communication	I2C to control external devices
Temp. measurement	1 K-type thermocouple input
Zero Resistance Ammeter	2nA ~ 2A ranges

Software	
Max. step per experiment	1000
Shutdown safety limits	Voltage, current, temperature, etc.
Max. sampling rate	20kHz(50usec) in burst mode
-	500kHz(2usec) in fast sweep mode
Min. sampling time	Unlimited
Sampling condition	Time, dv/dt, dI/dt, temperature, etc.

PC RequirementOperating systemWindowsXP SP3/7/8/10(32bit/64bit OS)PC specificationPentium4, RAM 1GB or higherDisplay1600x900 high color or higherUSBHigh speed 2.0

General	
Dummy cell	One external dummy cell included
Thermocouple	K-type, 1.5 meter long(option)
Auxiliary cable	Option
Misc. cable	Option
The specifications are subject to change without notice	

Windows is a registered trade mark of Microsoft Corporation.

Designing the Solution for Electrochemistry

WonATech Co., Ltd. 7, Neunganmal 1-gil, Seocho-gu, Seoul, 06801, Korea Phone: +82-2-578-6516 Fax: +82-576-2635 e-mail) sales@wonatech.com website: www.wonatech.com

Local Distributor

